Connexin30 deficiency causes instrastrial fluid-blood barrier disruption within the cochlear stria vascularis.

نویسندگان

  • Martine Cohen-Salmon
  • Béatrice Regnault
  • Nadège Cayet
  • Dorothée Caille
  • Karine Demuth
  • Jean-Pierre Hardelin
  • Nathalie Janel
  • Paolo Meda
  • Christine Petit
چکیده

The endocochlear potential (EP) is essential to hearing, because it provides approximately half of the driving force for the mechanoelectrical transduction current in auditory hair cells. The EP is produced by the stria vascularis (SV), a vascularized bilayer epithelium of the cochlea lateral wall. The absence of the gap junction protein connexin30 (Cx30) in Cx30(-/-) mice results in the SV failure to produce an EP, which mainly accounts for the severe congenital hearing impairment of these mice. Here, we show that the SV components of the EP electrogenic machinery and the epithelial barriers limiting the intrastrial fluid space, which are both necessary for the EP production, were preserved in Cx30(-/-) mice. In contrast, the endothelial barrier of the capillaries supplying the SV was disrupted before EP onset. This disruption is expected to result in an intrastrial electric shunt that is sufficient to account for the absence of the EP production. Immunofluorescence analysis of wild-type mice detected Cx30 in the basal and intermediate cells of the SV but not in the endothelial cells of the SV capillaries. Moreover, dye-coupling experiments showed that endothelial cells were not coupled to the SV basal, intermediate, and marginal cells. SV transcriptome analysis revealed a significant down-regulation of betaine homocysteine S-methyltransferase (Bhmt) in the Cx30(-/-) mice, which was restricted to the SV and resulted in a local increase in homocysteine, a known factor of endothelial dysfunction. Disruption of the SV endothelial barrier is a previously undescribed pathogenic process underlying hearing impairment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Structure and the Function of the Cochlear Intra-Strial Fluid-Blood Barrier

The fluid-blood barrier selectively excludes most blood-borne substances from entering the inner ear, protecting tissues from factors in the blood which would perturb the homeostasis [1]. In her paper, Dr. Shi timely reviews current views on the structure and function, pathology and therapeutic targets of the blood barrier in the stria vascularis. The blood barrier in the stria vascularis is a ...

متن کامل

Pathophysiology of the cochlear intrastrial fluid-blood barrier (review).

The blood-labyrinth barrier (BLB) in the stria vascularis is a highly specialized capillary network that controls exchanges between blood and the intrastitial space in the cochlea. The barrier shields the inner ear from blood-born toxic substances and selectively passes ions, fluids, and nutrients to the cochlea, playing an essential role in the maintenance of cochlear homeostasis. Anatomically...

متن کامل

Lipopolysaccharide-Induced Middle Ear Inflammation Disrupts the cochlear Intra-Strial Fluid–Blood Barrier through Down-Regulation of Tight Junction Proteins

Middle ear infection (or inflammation) is the most common pathological condition that causes fluid to accumulate in the middle ear, disrupting cochlear homeostasis. Lipopolysaccharide, a product of bacteriolysis, activates macrophages and causes release of inflammatory cytokines. Many studies have shown that lipopolysaccharides cause functional and structural changes in the inner ear similar to...

متن کامل

Matrix metalloproteinase-2 and −9 contribute to functional integrity and noise-induced damage to the blood-labyrinth-barrier

The cochlear blood-labyrinth barrier (BLB), located in the stria vascularis, is critical for the homeostasis of cochlear solutes and ion transport. Significant disruption to the BLB occurs early during noise‑induced hearing loss. Matrix metalloproteinase (MMP)‑2 and ‑9 are important molecules known to be capable of degrading tight junction (TJ) proteins. The TJ proteins are important components...

متن کامل

Attenuating Cardiac Pulsations within the Cochlea: Structure and Function of Tortuous Vessels Feeding Stria Vascularis

The mammalian ear has an extraordinary capacity to detect very low-level acoustic signals from the environment. Sound pressures as low as a few μ Pa (-10 dB SPL) can activate cochlear hair cells. To achieve this sensitivity, biological noise has to be minimized including that generated by cardiovascular pulsation. Generally, cardiac pressure changes are transmitted to most peripheral capillary ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 15  شماره 

صفحات  -

تاریخ انتشار 2007